Rofo
DOI: 10.1055/a-2594-7451
Review

MRI Diagnostics of the Fingers: Current Developments and Clinical Relevance

Article in several languages: English | deutsch
Thomas Bayer
1   Department of Radiology, University Hospitals Erlangen Department of Radiology, Erlangen, Germany (Ringgold ID: RIN197668)
2   Institute of Neuroradiology and Radiology, Klinikum Fürth, Fürth, Germany
,
Christoph Lutter
3   Department of Orthopedics, University Medical Center, Rostock, Germany
,
Rolf Janka
1   Department of Radiology, University Hospitals Erlangen Department of Radiology, Erlangen, Germany (Ringgold ID: RIN197668)
,
Michael Uder
1   Department of Radiology, University Hospitals Erlangen Department of Radiology, Erlangen, Germany (Ringgold ID: RIN197668)
,
Frank Roemer
1   Department of Radiology, University Hospitals Erlangen Department of Radiology, Erlangen, Germany (Ringgold ID: RIN197668)
4   Department of Radiology, Chobanian & Avedisian School of Medicine, Boston University, Boston, United States (Ringgold ID: RIN1846)
› Author Affiliations
 

Abstract

Background

Magnetic resonance imaging (MRI) is an excellent method for visualizing the complex anatomical structures of the fingers. The high diagnostic standard is based on numerous recent technical developments to improve soft tissue differentiation and detail recognition, and includes time-resolved functional imaging

Method

This review highlights the current status of MRI in finger diagnostics. The content of this narrative review is based on a literature search in the PubMed and Google Scholar databases using the search terms “finger MRI” and “finger imaging”.

Conclusion

Due to numerous technical optimizations and the increasing clinical availability of MRI, this examination has become indispensable in routine use for the further clarification of traumatic and orthopedic clinical pictures. MRI is also playing an increasingly important role in rheumatic and inflammatory issues, as well as tumors, whereby the particularly high potential for early detection and the detailed soft tissue imaging are especially advantageous.

Key Points

  • MRI enables precise differential diagnosis of all clinical pictures of the fingers and is useful in the clarification of traumatic, orthopedic, rheumatic, inflammatory, and neoplastic issues.

  • Multi-channel hand coils, scanners with high magnetic field strengths, and the use of contrast agents have led to an evaluation with resolutions in the submillimeter range in some cases.

  • High-resolution MRI, including the possibility of functional examination, makes it easier to determine adequate therapy and avoid subsequent damage while meeting high standards.

Citation Format

  • Bayer T, Lutter C, Janka R et al. MRI Diagnostics of the Fingers: Current Developments and Clinical Relevance. Rofo 2025; DOI 10.1055/a-2594-7451


#

Introduction

Anatomy of the finger

The anatomy of the finger is characterized by a complex interaction of bones, joints, tendons, ligaments, nerves, and blood vessels ([Fig. 1]a, b) [1] [2]. In the long fingers, the distal and proximal interphalangeal joints (DIP, PIP) serve functionally as hinge joints, while the metacarpo-phalangeal joints (MCP) have the function of ellipsoid joints to a limited extent [3]. The joint capsules of the long fingers (digs. 2–5) are reinforced on the radial and ulnar sides by two obliquely running, V-shaped collateral ligaments (lig. collateralia and lig. collateralia accessoria) [1] [2]. The volar (or palmar) plates (VP) are mobile, anatomically complex, flexor-side meniscoid fibrocartilaginous structures with a stabilizing function of the joint capsules against hyperextension, as well as translational and rotational stress [1] [4]. The MCP digs. 1–4 are connected to each other functionally by the metacarpo-phalangeal junction nuclei (Zancolli); between these run transverse ligaments (ligg. metacarpalia transversa profunda), which, together with the adjacent lumbrical muscle and interosseous tendons, stabilize the ellipsoid joints [5]. The long flexor and extensor tendons (m. flexor digitorum superficialis & profundus, m. extensor digitorum, m. flexor pollicics longus, m. extensor pollicis longus) originate on the forearm and insert on the respective phalanges [1]. Distally, the tendons of the flexor digitorum profundus (FDP) and the flexor digitorum superficialis (FDS) run in a common synovial tendon sheath [6]. In the chiasma tendineum, the FDS splits and forms a point of passage for crossing under the FDP [1]. This makes it possible for the FDS to insert separately at the middle phalanx base and the FDP further distally at the end phalanx [1]. The chiasma tendineum is particularly clinically relevant, as injuries here usually have a critical prognosis (tendon zone 2 = “danger zone”). The tendon sheaths are reinforced on the flexor side by locally limited retinacular fiber bundles in the form of five annular (proximal-distal: A1–A5) and three cruciate pulleys (C1 to C3) [1]. This creates a functional flexor tendon support system that guides the tendons to transmit force near the joints and phalanges [7]. The A2 and A4 annular pulleys are particularly strong and insert directly to the bone, while A1, A3, and A5 insert at the VP [8]. The extensor tendons run in dorsal [9] tendon sheaths, divide at the level of the proximal phalanx and insert proximally as the middle tract (tractus intermedius) at the base of the middle phalanx and distally via two lateral tracts (tractus laterales) together at the base of the distal phalanx [6]. At the level of the metacarpal, the extensor tendons form a dorsal aponeurosis as an extensor hood, in which six extensor tendon compartments can be differentiated anatomically and into which radiate fibers of the lumbrical and interosseous tendons [6].

Zoom Image
Fig. 1 a Diagram of finger anatomy. Capsule structures and flexor tendon support apparatus. Lig. collateralia (thick arrows) and lig. collateralia accessoria (thin arrows); annular pulleys (A1–A5), VP volar plate. b Cross-section at the level of the MCP: ET extensor tendon, FDP tendon of the m. flexor digitorum profundus, FDS tendon of the m. flexor digitorum superficialis, IOS tendons of the mm. interossei, LM lumbrical muscle, LMTP lig. metacarpeum transversum profundum, circle indicates Zancolli complex, A1 A1 pulley. c Trauma mechanism of the Stener lesion as a complication of ski thumb injury: Lig. collaterale & lig. collaterale accessorium (thick arrows) are dislocated over the adductor aponeurosis (AA). EH: extensor hood MAP: m. adductor pollicis. Source: Biotic Artlab.

The thumb saddle joint enables the ability to oppose and reposition, which is a basic prerequisite for fine motor activities in humans [1]. The stabilization of the thumb saddle joint is provided by a collateral ligament system and several diagonal and horizontal ligaments to the wrist and the adjacent os-metacarpale-2 base [10]. The anatomy of the thumb muscles is complex and includes, in addition to the long thumb muscles mentioned above, the short muscles of the thenar eminence: m. abductor pollicis brevis, m. flexor pollicis brevis, m. opponens pollicis, and m. adductor pollicis brevis [1]. On the ulnar side, at the level of the metacarpo-phalangeal joint of the thumb, tendon fibers of the adductor pollicis muscle radiate into the extensor hood, forming the adductor aponeurosis ([Fig. 1]c). On the radial side, the tendons of the flexor pollicis brevis muscle and the abductor pollicis brevis muscle form a common thenar aponeurosis [1].


#

Examination technique

Optimized MRI of the finger is characterized by the use of dedicated multi-channel high-frequency surface coils for improved signal reception on modern scanners with a strong gradient system [9]. High-field MRI (>1.5 Tesla) offers advantages because the additionally higher MR signal can improve spatial resolution while simultaneously reducing scan time. [11] [12]. Layer thicknesses of maximum 2.5 mm in 2-D technology or voxel sizes of ≤ 0.5mm3 isotropic in 3D technology are considered standard ([Table 1], see also protocol recommendations of the German Radiological Society AG MSK) [5]. Positioning in the Superman position while avoiding shoulder hyperextension allows optimal artifact-free examination results to be achieved [5]. The slice guidance is centered on the respective finger in neutral position as standard, on the thumb, due to the special anatomy, a separate sequence planning should be carried out separately from the long fingers [10]. Typical protocols include native proton, T1- and T2-weighted turbo spin echo (TSE) sequences, both with and without fat saturation (fs), as well as corresponding gradient echo (GRE) sequences in 3D technology [5]. Intravenous administration of contrast medium (CM) should be considered liberally, as it facilitates the diagnosis of acute concomitant inflammatory and chronic fibrovascular repair processes [6]. Depending on the question, it may be useful to extend the imaging from the finger to the hand/forearm, particularly in the case of pathologies of the long finger tendons. Functional examinations in different positions and during movement can also be used [4] [13] [14].

Table 1 Recommended sequences.

Sequence type

Layer thickness (mm)

Orientation (mostly)

Recommendation for

MSK = musculoskeletal, INF = inflammatory, NPL = neoplastic issues. Depending on the pathology, the entire affected finger ray should be scanned entirely.

Native

PD TSE fs

2–2.5

axial

Standard

MSK, INF, NPL

T2 TSE

2–2.5

axial

Standard

MSK, INF, NPL

T1 TSE

2

coronal

Bone pathologies

MSK, INF, NPL

PD TSE fs

2

sagittal

Extensor/flexor side pathologies

MSK, INF, NPL

PD TSE fs

2

coronal

Lateral side pathologies

MSK, INF, NPL

3D GRE

0.5

coronal (acquisition) 3D MPR reconstruction

Tendon pathologies

MSK

Post CM

T1 TSE fs

2–2.5

triplanar (axial, sagittal, coronal)

Enhancement soft tissues

Detail recognition

MSK, INF, NPL

3D GRE

0.5

coronal (acquisition) 3D MPR reconstruction

Alternative option 3D

Post CM

MSK, INF, NPL


#
#

Orthopedic/traumatic finger MRIs

Soft tissue injuries of the finger and thumb are usually the result of acute and/or chronic repetitive trauma – e.g. as a result of sports or work-related injuries – as well as a variety of mechanical causes resulting from falls or other accidents. MRI is particularly helpful as an additional diagnostic tool after clinical examination, X-ray, and ultrasound for the assessment of ligament and tendon injuries as well as bony (stress) fractures. Complications such as ligament dislocations can be excluded with MRI, which allows for appropriate management of therapy and the prevention of subsequent damage. MRI is also playing an increasing role in degenerative diseases such as osteoarthritis or tendon degeneration as part of increasingly individualized therapeutic approaches.

Collateral ligaments

In cases of avulsions following radial/ulnar distortion of the DIP, PIP, and MCP, MRI often confirms a bony fragment that was already radiographically identifiable, but purely ligamentous collateral ligament ruptures can also be easily detected with MRI ([Fig. 2]a) [10]. More serious injuries with ligament dislocation usually result from dislocations that can also affect other joint structures such as the VP [15]. Severe ligament dislocations are rare beyond the classic Stener lesion at the metacarpo-phalangeal joint of the thumb, but can then be a criterion for surgical treatment [10]. For optimal differentiation of the various injury patterns and for detailed visualization of the two fiber bundles of the collateral ligaments, additional oblique paracoronal sequences along the fiber direction have proven useful.

Zoom Image
Fig. 2 a Traumatic ligament and capsule injuries of the finger. F 48 yrs, dig. 3. PIP, PD fs coronal: undislocated rupture (arrow) of an ulnar collateral ligament after distortion. The accessory ulnar cord to the VP (arrowhead) and two radial-sided UCL cords (arrowheads) are intact. The injury healed without any problems after conservative therapy. (b and c) F 68 yrs, dig. 1, PD fs coronal (b) and ax T2 (c): Stener lesion as a complication of a “ski thumb injury” after distortion. Dislocation of the ulnar collateral ligament of dig. 1 due to recoil during trauma (yo-yo sign, arrowheads). Arrow: adductor aponeurosis. Surgical revision with ligament suturing followed. d–f M 42 yrs, dig. 2. PIP, PD fs sagittal: d Avulsion of the VP with clear retraction (arrow). e For comparison, the VP of dig. 3 of the same patient is correctly positioned (arrow). f Example of fluid leakage into the extracapsular soft tissues with rupture of the distal insertion of the VP of dig. 2 of a different patient (arrow). The joint shows degenerative changes with osteophytic growths and chondropathy, particularly at the palmar proximal phalanx head.

Distortions caused by twisting the thumb are the most common cause of the classic “skier’s thumb injury” and usually involve a rupture of the ulnar collateral ligament (UCL) of the first digit. [16]. MRI is particularly important for further clarification in order to exclude concomitant injuries such as ligament dislocation with/without involvement of avulsion fragments, sesamoid bones, or other complications [5]. The so-called Stener lesion ([Fig. 2] b,c) represents a particular complication of skier’s thumb due to anatomical conditions in which the ruptured UCL ligament is dislocated over the adductor aponeurosis (yo-yo sign) [5]. This can be seen clearly in the MRI and is therapeutically important, as conservative treatment approaches in such situations almost always fail due to ligament dislocation [17].


#

Volar plates

Ruptures of the VP usually occur due to hyperextension trauma and/or as an accompanying injury during dislocation [10] [18]. The injuries are almost always located at the distal insertion at the level of the respective phalange base on level with the “cul du sac” recess [19]. This may already be visible radiologically in cases of bony avulsion [10]. VP injuries are especially easy to detect with MRI in the case of a pure soft tissue lesion ([Fig. 2] d–f) [20]. The VP dislocation in the proximal direction, which often occurs in rupture, is an important criterion for any surgical treatment [19].


#

Pulley ligaments

Pulley ligament ruptures typically occur due to acute overloading of the finger, such as when climbing, particularly when tensile overloads occur with the finger in a strongly bent position (“crimp grip” position). [21] [22]. MRI protocols with high technical quality can now directly visualize the particularly fine, ruptured ligaments (A2, A3, A4) ([Fig. 3]a) and thus enable a detailed evaluation of the injury pattern [11] [23] [24]. In the case of a pulley ligament rupture, typically what is known as a bowstringing sign ([Fig. 3]b) is found, which is a deviation with a widened gap between the flexor tendon and the phalanx [7]. This increases under forced flexion and can be provoked [25]. With regard to the determination of therapy, identification of the rupture pattern and bowstringing are relevant, as these determine the indications for conservative therapy with a ring splint and/or for surgical reconstruction [15]. In addition, MRI allows the exclusion of complications such as ligamentary dislocation, e.g. due to pulley stump intercalation [12], and is therefore crucial for preoperative management in order to prevent subsequent damage such as flexion contracture. A targeted assessment of the functionally relevant, but at the same time very thin A3 pulley ligament can be achieved not only by direct MRI imaging but also indirectly by functional images in the crimp grip position ([Fig. 3]b) or with CINE-MRI during finger flexion [13] [26]. In contrast to the A2–A4 pulley ligaments, the A5 pulley ligament has little trauma-pathological significance due to its location at the distal phalanx. The A1 pulley above the MCP also rarely ruptures, but can be chronically degeneratively thickened and, in the case of concurrent degenerative tendon changes, cause “snapping” or “trigger” finger symptoms [6]. MRI can be used here for planning before surgical ring ligament splitting.

Zoom Image
Fig. 3 a Traumatic ligament and pulley injuries of the finger. F 23 yrs, PD TSE fs axial: Singular A4 pulley rupture. Despite the slight intercalation of the ruptured pulley stump between tendon and bone (arrow), conservative therapy in this case had a very good functional outcome. The axial MRI allows detection of intercalation of ruptured pulley stumps under the flexor tendons, which in more severe cases can be a criterion for surgical revision. b M 36 yrs, PD TSE sagittal functional images: Triple A2, A3, A4 pulley rupture dig. 4 (left) with increased bowstringing (arrows) over the proximal and middle phalanx, as well as over the VP of the PIP with separation of the chiasma tendineum (circle) with increasing finger flexion (middle, right). Surgical pulley reconstruction followed. c–f M 25 yrs , dig. 4. MPR reconstructions of a 3D TrueFISP GRE: Cut injury of the FDP tendon with retracted FDP tendon stump extending to the metacarpal (arrow; c, d, e, f). The intact FDS tendon ligaments are isolated and intact in 3D (arrowheads; c, d, e). Surgical tendon reconstruction followed. g M 46 yrs, T1 TSE fs post CM; putrid tenosynovitis in the 3rd to 6th extensor tendon compartment following a previous minor injury/rhagades. MRI enables diagnosis of spread to plan surgical debridement. h F 66 yrs, PD TSE fs axial: De Quervain tenosynovitis with inflammatory thickening of the extensor pollicis brevis and abductor pollicis longus tendons in the first extensor tendon compartment (arrow).

#

Tendon pathologies

MRI enables the diagnosis of complete or partial tendon tears, and helps to determine the location and extent of any tendon retraction [6]. Injuries are usually the result of open trauma such as knife cuts, etc. Closed flexor tendon ruptures are rare [10]. The flexor tendons are clearly visible as hypointense, linear-fibrillar structures in T2-weighted, fat-suppressed, and proton-weighted sequences. 3D sequences allow for particularly good differentiation of the separate FDS and FDP fiber bundles in healthy individuals and post-traumatically in cases of injury. Tendon retractions can also extend far proximally to the forearm; accordingly, the field of view (FOV) in the MRI should be planned to be sufficiently large ([Fig. 3] c–f). Typically, a fluid signal is present at the injury site; hemorrhages may also result in an increased T1 and T2 signal. Flexor tendon injuries are almost always detectable in native MRI, but can be associated with tenosynovitis, especially in subacute or chronic cases. Here, contrast application can provide additional insights, as inflammation can lead to thickening of the tendon sheaths, capsules and VP [5] [6]. In the case of underlying rheumatic diseases (see below), advanced stages can lead to well-known deformities, such as buttonhole and swan-neck finger, due to musculo-ligamentary imbalances and associated tendon and joint destruction.

Extensor tendon ruptures are particularly common in clinical practice [6] [10] [27]. High-resolution axial and sagittal MRI can differentiate the various elements of the extensor tendons and extensor hood, such as the lateral tract, the intermediate tract, and the intertendinal connexus, as well as their involvement in an injury. In addition to the sagittal and axial T2 and PD sequences, the production of 3D sequences can be advantageous for this purpose. Ruptures are sometimes associated with avulsion fragments, which are clearly visible in both MRI and conventional X-rays. If conservative scarring is insufficient in extensor tendon injuries, which can be caused, for example, by insufficient immobilization and severe tendon stump dislocation (with or without avulsion fragment), this can lead to what is known as a hammer-finger deformity (syn. mallet finger) [27].

In bacterial tendonitis, MRI can clearly demonstrate spread along tendon sheath compartments ([Fig. 3]g) and the presence of associated abscesses and/or osteomyelitis, which is why it has proven useful for preoperative imaging before debridement in acute septic hand and finger injuries [5] [6].

We should also mention inflammatory tendon changes of non-rheumatic origin in tendon sheath compartments in the context of chronic friction phenomena such as De Quervain’s stenosing tenosynovitis ([Fig. 3]h) [20].


#

Osseous injuries

In addition to visible fractures or avulsion fragments, osseous injuries are often accompanied by contusional changes in the bone marrow, which are best detected in fluid-sensitive, fat-suppressed sequences. Fracture lines are visualized very well, especially in T1 sequences. In addition to acute traumatic changes, stress phenomena due to chronic repetitive overload through sport ([Fig. 4]a) or through work play an increasingly important role [28] [29] [30]. Insufficient fracture healing of the carpal bones with contact to finger tendons can lead to chronic tendinous irritations ([Fig. 4] b–e) and even to the complications of a tendon rupture [31] [32]. In some cases, fracture fragments of the finger are particularly small and cannot always be detected radiologically without overlap. For this reason, MRI imaging benefits from high resolution, which is particularly good at visualizing incomplete, radiologically occult, or trabecular fractures. Conversely, however, conventional X-rays should not be omitted under any circumstances, since even radiologically visible fragments cannot always be visualized by MR imaging ([Fig. 4] f,g).

Zoom Image
Fig. 4 a M 15 yrs, PD TSE fs axial: dig. 3. Stress fracture (arrow) dorsally in the epiphyseal plate due to chronic repetitive overload during climbing training. The X-ray image in this case was occult and not informative. Adequate training rest with immobilization is important for healing in order to prevent the formation of pseudarthroses. b–c M 35 yrs PD TSE fs axial and computed tomography in neutral position: Pseudarthrosis of the hamulus ossis hamati as a result of chronic repetitive overloading with stress fracture. Symptomatic in this case, however, was chronic tenosynovitis of the flexor tendon (arrow) dig. 5 due to irritation at the pseudarthrosis gap (arrowheads). d–e Same patient. PD TSE fs axial and coronal functional images: The patient’s symptoms were provoked by ulnar deviation, because the dig. 5 flexor tendon (arrow) dislocated into the diverging carpal pseudarthrosis gap (arrowheads). MRI in the functional position confirmed the pathomechanism and surgical revision with resection of the hamulus was performed. f–g F 37 yrs, PD TSE fs coronal and Dorso-volar X-ray: bony avulsion of the UCL at the IP of the thumb. The strong bone marrow edema can only be seen in MRI, whereas the fracture gap is also visible in X-ray (arrow).

#
#

Inflammatory/rheumatic diseases of the finger

MRI is the gold standard in the diagnosis of synovial diseases and, in addition to conventional X-rays, is therefore becoming increasingly important for the diagnosis of rheumatic diseases [6] [33]. Finger or hand/finger MRI has the potential to detect progression to rheumatoid arthritis early in patient populations with undifferentiated arthritis [34] [35]. It is also helpful in early rheumatic differential diagnosis, in order to be able to assign the inflammatory distribution pattern (e.g. synovitis, tenosynovitis, enthesitis, osteitis, erosion, etc. ([Fig. 5])) to the various diseases [36]. This can be an important complement to conventional X-rays, especially when looking to detect early soft tissue changes before osteodestructive-erosive and osteoproliferative changes. In addition, MRI is playing an increasingly important role in therapy monitoring after anti-rheumatic medication [37] [38]. Even in cartilage, despite the small spatial extent, early inflammation-associated changes can be used with compositional imaging techniques to assess cartilage quality [39].

Zoom Image
Fig. 5 a Rheumatic diseases. F 53 yrs, X-ray a.p.: Psoriatic arthritis is characterized by osteodestructive-erosive and osteoproliferative changes. In this example of long-standing psoriatic arthritis, erosions are visible at the radial middle phalanx base and the proximal phalanx head (arrows). In addition, periosteal osteoproliferative changes are seen on the radial side of the distal proximal phalanx (arrowhead). On the ulnar side at the level of the PIP joint, there is a pronounced soft tissue swelling (asterisk). b M 65 yrs, X-ray a.p.: Involvement of the interphalangeal joints is characteristic of psoriatic arthritis. This example shows pronounced osteoproliferative changes at the distal interphalangeal joint of dig. 2 (arrows). In addition, periosteal osteoproliferations are visible at the distal proximal phalanx of dig. 3 (arrowheads). c Same patient. T1w fs post CM: The MRI acquired on the same day also shows the soft tissue changes of florid synovitis (arrows) as well as diffuse subcutaneous and periosteal soft tissue inflammation corresponding to the clinical picture of dactylitis (arrowhead). In addition, diffuse edema-equivalent marrow cavity alterations corresponding to osteitis are found, which cannot be detected in X-rays but can be detected in MRI and, to a limited extent, in dual energy CT (asterisk). d F 65 yrs, X-ray a.p.: This example shows osteodestructive and osteoproliferative changes in different fingers in the context of psoriatic arthritis. Clear erosions can be seen in the area of the base of the proximal phalanx of D5 (arrows). At the same time, osteoproliferations (“protuberances”) are visible at the distal interphalangeal joints of dig. 2 and dig. 3 (small arrowheads). In addition, a typical “pencil in cup” pattern of advanced osteodestruction is seen in the distal parts of the middle phalanx with buttonhole deformity of dig. 5 typical of advanced disease (large arrowhead). e M 76 yrs, X-ray a.p.: The most important differential diagnosis of psoriatic arthritis is interphalangeal joint osteoarthritis. This example shows the erosive form of interphalangeal joint osteoarthritis with characteristic bird-wing deformities of the distal interphalangeal joints of dig. 3 and dig. 4 (black arrows). In addition, what are known as “sawtooth” erosions are found in subchondral locations at the PIP joint of dig. 4 (white-bordered arrows). f F 66 yrs, X-ray a.p.: This example shows a classic “sawtooth” erosion in the proximal interphalangeal joint of dig. 2 (arrows), while the third PIP joint shows a non-erosive appearance of advanced osteoarthritis with joint space narrowing and subchondral sclerosis (arrowhead). The main difference between the two osteoarthritis subtypes is the presence or absence of erosions on X-ray. The clinical manifestations are often very similar, although erosive osteoarthritis is characterized by more frequent bouts of inflammation that affect several joints simultaneously and can last for years. g F 71 yrs, PDw coronal: Erosive osteoarthritis. The MRI shows a subchondral cystic lesion (arrow) and a classic marginal osteophyte (arrowhead). h Same patient. T1 fs post CM axial: Correspondingly, at the level of the joint space a pronounced intra- and periarticular contrast enhancement is visible as part of a florid synovitis (arrows). i F 83 yrs, X-ray a.p.: The simultaneous presence of degenerative-arthritic and primary inflammatory changes occurs particularly in older patients with late onset RA. This example shows typical rheumatic erosions in the context of rheumatoid arthritis at the ulnar bases of dig. 4 and dig. 5 (long arrows). In addition, typical osteophytic growths are found in IP osteoarthritis (small arrowheads). A narrowing of the joint space is particularly evident in the PIP joint on dig. 5 (short arrow). Finally, subchondral erosions typical of osteoarthritis are also seen in the DIP joint of dig. 5 (large arrowheads).

Inflammatory changes in the finger joints are in many cases of a chronic degenerative origin, especially in the context of erosive osteoarthritis. In addition to conventional X-rays, MRI is used to confirm the diagnosis and show the extent of inflammatory activity.


#

Tumors and tumor-like lesions of the finger

MRI allows for detailed imaging and differential diagnosis of all tumors and tumor-like lesions of the finger [40] [41]. Benign tumors include ganglia, bone cysts, neuromas, lipomas, fibromas, etc. The benign synovial ganglion is easy to diagnose at first glance using MR imaging due to its smooth border and homogeneous T2 hyperintense and T1 hypointense signal pattern. The most common tumor originating from bone is the benign enchondroma ([Fig. 6] a,c), also with a typical appearance with sharp margins, T1 moderately low, T2 predominantly hyperintense signal, and T1 post-contrast strong enhancement along the serrated edges and septa [40] [41]. The glomus tumor ([Fig. 6] d,f) is a benign tumor of the small blood vessels, which is often located under the fingernail and is often no larger than a few millimeters [42]. The tumor-like, benign lesions with an aggressive growth pattern include the giant cell tumor ([Fig. 6] g,i), which originates from the tendon sheaths and was referred to as extra-articular pigmented villonodular synovitis according to the WHO classification until 2020 [40] [41]. One differential diagnosis is finger bursitis ([Fig. 6]j). In the case of rare malignant tumors such as synovial sarcoma, chondrosarcoma, and osteosarcoma, MRI also plays a very important role in early differential diagnosis and detailed imaging, including follow-up imaging during therapy.

Zoom Image
Fig. 6 a Tumor and tumor-like lesions of the finger. M 16 yrs, PD TSE sagittal: Typical enchondroma of the proximal phalanx base of dig. 3 with a discrete cortical fracture on the flexor side (arrowhead). The lesion has sharp margins, is located exclusively in the medullary cavity, and does not show any infiltrative character in the surrounding area. In fluid-sensitive sequences, enchondromas appear highly hyperintense. b The corresponding T1w image shows a homogeneous hypointensity of the lesion (asterisk) and also shows the fracture (arrowheads). c The corresponding lat. X-ray shows typical “scalloping,” i.e. an arch-shaped endosteal thinning of the cortex. The lesion appears radiolucent (asterisk). The fracture cannot be seen on the X-ray. Enchondromas are usually asymptomatic unless complications occur, as in this case. d M 49 yrs, T1 axial native: painful area near the distal phalanx of the thumb. Directly palmar to the nail bed, a round, hypointense mass is visible (arrows). e On axial T2 weighting, the lesion appears predominantly hyperintense (arrow) with central hypointense components (arrowhead), which argues against a purely cystic lesion. f The corresponding T1w fat-suppressed contrast sequence shows strong homogeneous enhancement (arrows). Based on clinical findings, MRI morphology, and CM behavior, the diagnosis of a glomus tumor was made, which was confirmed histologically. g F 46 yrs, T1 axial: Giant cell tumor of the flexor tendon sheath (formerly also referred to as localized form of PVNS). The MRI shows a homogeneous intermediate-hypointense lesion (asterisk), which is well demarcated from the surrounding tissue and has no infiltrative character (arrows). h The corresponding T2 image shows an inhomogeneous signal character of the lesion with only small areas of low signal intensity in the center. The flexor tendon borders the lesion with a broad base (asterisk). In conjunction with the typical localization, these susceptibility effects point to the diagnosis. i T1 fs post CM: The MRI shows strong contrast enhancement of the lesion, especially in the periphery, while larger parts in the center show only low contrast enhancement (asterisk). j F 47 yrs, T2 axial: The differential diagnosis of space-occupying, predominantly hyperintense lesions on T2w includes bursitis, which is rarely observed, however, in the area of the finger. The MRI shows chronic encapsulated bursitis of the dorsal metacarpo-phalangeal bursa (arrows).

#

Limitations/outlook for MRI

Despite its many advantages, MRI also has limitations. These include the considerable amount of time required for procedures, the higher costs compared to conventional X-ray diagnostics or ultrasound, the sometimes still limited availability of state-of-the-art scanning technology, and the fact that motion artifacts and metal implants can reduce image quality. New dimensions in finger diagnostics are opening up with the continued development of technical standards, such as CINE-MRI [13], as well as dynamic (4D) contrast-enhanced MRI, high-field MRI, and new coil technologies. Future developments, such as artificial intelligence (AI)-powered analytics, could also further refine and accelerate diagnostics.


#

Conclusion

Finger MRI, depending on the issue, has become indispensable in clinical practice today. Its biggest advantage lies in early diagnosis and precise differentiation of pathological processes. Therapy planning in hand surgery and sports medicine benefits significantly from it, especially when finger MRI with modern protocols enables high levels of detail recognition and soft tissue differentiation. MRI is also playing an increasingly important role for rheumatic and inflammatory issues, as well as tumors, because it offers a particularly high potential for early detection.


#
#

Conflict of Interest

The authors declare that they have no conflict of interest.

  • References

  • 1 Schmidt HM, Lanz U. Chirurgische Anatomie der Hand. Stuttgart, New York: Thieme; 1992
  • 2 Hentz VR. Functional anatomy of the hand and arm. Emerg Med Clin North Am 1985; 3: 197-220
  • 3 Moran CA. Anatomy of the hand. Phys Ther 1989; 69: 1007-1013
  • 4 Bayer T, Schweizer A, Muller-Gerbl M. et al. Proximal interphalangeal joint volar plate configuration in the crimp grip position. J Hand Surg Am 2012; 37: 899-905
  • 5 Schmitt R. Ligament injuries of fingers and thumbs. Radiologe 2017; 57: 43-56
  • 6 Schmitt R, Hesse N, Grunz JP. Tendons and Tendon Sheaths of the Hand – An Update on MRI. Rofo 2022; 194: 1307-1321
  • 7 Hauger O, Chung CB, Lektrakul N. et al. Pulley system in the fingers: Normal anatomy and simulated lesions in cadavers at MR imaging, CT, and US with and without contrast material distention of the tendon sheath. Radiology 2000; 217: 201-212
  • 8 Zafonte B, Rendulic D, Szabo RM. Flexor pulley system: anatomy, injury, and management. J Hand Surg Am 2014; 39: 2525-2532
  • 9 Dalili D, Fritz J, Isaac A. 3D MRI of the Hand and Wrist: Technical Considerations and Clinical Applications. Semin Musculoskelet Radiol 2021; 25: 501-513
  • 10 Bayer T. Finger injuries with a focus on ligamentous structures. Radiologe 2021; 61: 426-432
  • 11 Bayer T, Bachter L, Lutter C. et al. Comparison of 3T and 7T magnetic resonance imaging for direct visualization of finger flexor pulley rupture: An ex-vivo study. Skeletal Radiol 2024; 53: 2469-2476
  • 12 Heiss R, Librimir A, Lutter C. et al. MRI of Finger Pulleys at 7T-Direct Characterization of Pulley Ruptures in an Ex Vivo Model. Diagnostics (Basel) 2021; 11
  • 13 Bayer T, Adler W, Janka R. et al. Magnetic resonance cinematography of the fingers: A 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols. Skeletal Radiol 2017; 46: 1721-1728
  • 14 Lutter C, Kuerten S, Geppert C. et al. Dynamic study of the finger interphalangeal joint volar plate-motion analysis with magnetic resonance cinematography and histologic comparison. Skeletal Radiol 2023; 52: 1493-1501
  • 15 Artiaco S, Bosco F, Lusso A. et al. Flexor Tendon Pulley Injuries: A Systematic Review of the Literature and Current Treatment Options. J Hand Microsurg 2023; 15: 247-252
  • 16 Giese J, Cerniglia C. Soft Tissue Injuries of the Finger and Thumb. Semin Ultrasound CT MR 2018; 39: 397-410
  • 17 Hesse N, Reidler P, Schmitt R. Sports-related injuries of the thumb and fingers. Radiologie (Heidelb) 2023; 63: 284-292
  • 18 Petchprapa CN, Vaswani D. MRI of the Fingers: An Update. AJR Am J Roentgenol 2019; 213: 534-548
  • 19 Kim YW, Roh SY, Kim JS. et al. Volar plate avulsion fracture alone or concomitant with collateral ligament rupture of the proximal interphalangeal joint: A comparison of surgical outcomes. Arch Plast Surg 2018; 45: 458-465
  • 20 Gupta P, Lenchik L, Wuertzer SD. et al. High-resolution 3-T MRI of the fingers: Review of anatomy and common tendon and ligament injuries. AJR Am J Roentgenol 2015; 204: W314-323
  • 21 Schoffl I, Oppelt K, Jungert J. et al. The influence of the crimp and slope grip position on the finger pulley system. J Biomech 2009; 42: 2183-2187
  • 22 Schweizer A. Biomechanical properties of the crimp grip position in rock climbers. J Biomech 2001; 34: 217-223
  • 23 Goncalves-Matoso V, Guntern D, Gray A. et al. Optimal 3-T MRI for depiction of the finger A2 pulley: Comparison between T1-weighted, fat-saturated T2-weighted and gadolinium-enhanced fat-saturated T1-weighted sequences. Skeletal Radiol 2008; 37: 307-312
  • 24 Guntern D, Goncalves-Matoso V, Gray A. et al. Finger A2 pulley lesions in rock climbers: Detection and characterization with magnetic resonance imaging at 3 Tesla--initial results. Invest Radiol 2007; 42: 435-441
  • 25 Bayer T, Fries S, Schweizer A. et al. Stress examination of flexor tendon pulley rupture in the crimp grip position: A 1.5-Tesla MRI cadaver study. Skeletal Radiol 2015; 44: 77-84
  • 26 Bayer T, Adler W, Schweizer A. et al. Evaluation of finger A3 pulley rupture in the crimp grip position-a magnetic resonance imaging cadaver study. Skeletal Radiol 2015; 44: 1279-1285
  • 27 Clavero JA, Alomar X, Monill JM. et al. MR imaging of ligament and tendon injuries of the fingers. Radiographics 2002; 22: 237-256
  • 28 Bayer T, Schoffl VR, Lenhart M. et al. Epiphyseal stress fractures of finger phalanges in adolescent climbing athletes: A 3.0-Tesla magnetic resonance imaging evaluation. Skeletal Radiol 2013; 42: 1521-1525
  • 29 El-Sheikh Y, Lutter C, Schoeffl I. et al. Surgical Management of Proximal Interphalangeal Joint Repetitive Stress Epiphyseal Fracture Nonunion in Elite Sport Climbers. J Hand Surg Am 2018; 43: 572 e571-572 e575
  • 30 Sims LA. Upper Extremity Injuries in Rock Climbers: Diagnosis and Management. J Hand Surg Am 2022; 47: 662-672
  • 31 Boulas HJ, Milek MA. Hook of the hamate fractures. Diagnosis, treatment, and complications. Orthop Rev 1990; 19: 518-529
  • 32 Milek MA, Boulas HJ. Flexor tendon ruptures secondary to hamate hook fractures. J Hand Surg Am 1990; 15: 740-744
  • 33 Prokop M, Schneider G, Vanzulli A. et al. Contrast-enhanced MR Angiography of the renal arteries: Blinded multicenter crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine. Radiology 2005; 234: 399-408
  • 34 den Hollander NK, Verstappen M, Sidhu N. et al. Hand and foot MRI in contemporary undifferentiated arthritis: In which patients is MRI valuable to detect rheumatoid arthritis early? A large prospective study. Rheumatology (Oxford) 2022; 61: 3963-3973
  • 35 Schueller-Weidekamm C, Lodemann KP, Grisar J. et al. Contrast-enhanced MR imaging of hand and finger joints in patients with early rheumatoid arthritis: Do we really need a full dose of gadobenate dimeglumine for assessing synovial enhancement at 3 T?. Radiology 2013; 268: 161-169
  • 36 Tani C, D’Aniello D, Possemato N. et al. MRI pattern of arthritis in systemic lupus erythematosus: A comparative study with rheumatoid arthritis and healthy subjects. Skeletal Radiol 2015; 44: 261-266
  • 37 Cimmino MA, Barbieri F, Boesen M. et al. Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis. J Rheumatol Suppl 2012; 89: 44-48
  • 38 Cimmino MA, Parodi M, Zampogna G. et al. Dynamic contrast-enhanced, extremity-dedicated MRI identifies synovitis changes in the follow-up of rheumatoid arthritis patients treated with rituximab. Clin Exp Rheumatol 2014; 32: 647-652
  • 39 Renner N, Kleyer A, Kronke G. et al. T2 Mapping as a New Method for Quantitative Assessment of Cartilage Damage in Rheumatoid Arthritis. J Rheumatol 2020; 47: 820-825
  • 40 Horcajadas AB, Lafuente JL, de la Cruz Burgos R. et al. Ultrasound and MR findings in tumor and tumor-like lesions of the fingers. Eur Radiol 2003; 13: 672-685
  • 41 Stacy GS, Bonham J, Chang A. et al. Soft-Tissue Tumors of the Hand-Imaging Features. Can Assoc Radiol J 2020; 71: 161-173
  • 42 Mundada P, Becker M, Lenoir V. et al. High resolution MRI of nail tumors and tumor-like conditions. Eur J Radiol 2019; 112: 93-105

Correspondence

Dr. Thomas Bayer
Department of Radiology, University Hospitals Erlangen Department of Radiology
Erlangen
Germany   

Publication History

Received: 14 March 2025

Accepted after revision: 10 April 2025

Article published online:
26 May 2025

© 2025. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

  • References

  • 1 Schmidt HM, Lanz U. Chirurgische Anatomie der Hand. Stuttgart, New York: Thieme; 1992
  • 2 Hentz VR. Functional anatomy of the hand and arm. Emerg Med Clin North Am 1985; 3: 197-220
  • 3 Moran CA. Anatomy of the hand. Phys Ther 1989; 69: 1007-1013
  • 4 Bayer T, Schweizer A, Muller-Gerbl M. et al. Proximal interphalangeal joint volar plate configuration in the crimp grip position. J Hand Surg Am 2012; 37: 899-905
  • 5 Schmitt R. Ligament injuries of fingers and thumbs. Radiologe 2017; 57: 43-56
  • 6 Schmitt R, Hesse N, Grunz JP. Tendons and Tendon Sheaths of the Hand – An Update on MRI. Rofo 2022; 194: 1307-1321
  • 7 Hauger O, Chung CB, Lektrakul N. et al. Pulley system in the fingers: Normal anatomy and simulated lesions in cadavers at MR imaging, CT, and US with and without contrast material distention of the tendon sheath. Radiology 2000; 217: 201-212
  • 8 Zafonte B, Rendulic D, Szabo RM. Flexor pulley system: anatomy, injury, and management. J Hand Surg Am 2014; 39: 2525-2532
  • 9 Dalili D, Fritz J, Isaac A. 3D MRI of the Hand and Wrist: Technical Considerations and Clinical Applications. Semin Musculoskelet Radiol 2021; 25: 501-513
  • 10 Bayer T. Finger injuries with a focus on ligamentous structures. Radiologe 2021; 61: 426-432
  • 11 Bayer T, Bachter L, Lutter C. et al. Comparison of 3T and 7T magnetic resonance imaging for direct visualization of finger flexor pulley rupture: An ex-vivo study. Skeletal Radiol 2024; 53: 2469-2476
  • 12 Heiss R, Librimir A, Lutter C. et al. MRI of Finger Pulleys at 7T-Direct Characterization of Pulley Ruptures in an Ex Vivo Model. Diagnostics (Basel) 2021; 11
  • 13 Bayer T, Adler W, Janka R. et al. Magnetic resonance cinematography of the fingers: A 3.0 Tesla feasibility study with comparison of incremental and continuous dynamic protocols. Skeletal Radiol 2017; 46: 1721-1728
  • 14 Lutter C, Kuerten S, Geppert C. et al. Dynamic study of the finger interphalangeal joint volar plate-motion analysis with magnetic resonance cinematography and histologic comparison. Skeletal Radiol 2023; 52: 1493-1501
  • 15 Artiaco S, Bosco F, Lusso A. et al. Flexor Tendon Pulley Injuries: A Systematic Review of the Literature and Current Treatment Options. J Hand Microsurg 2023; 15: 247-252
  • 16 Giese J, Cerniglia C. Soft Tissue Injuries of the Finger and Thumb. Semin Ultrasound CT MR 2018; 39: 397-410
  • 17 Hesse N, Reidler P, Schmitt R. Sports-related injuries of the thumb and fingers. Radiologie (Heidelb) 2023; 63: 284-292
  • 18 Petchprapa CN, Vaswani D. MRI of the Fingers: An Update. AJR Am J Roentgenol 2019; 213: 534-548
  • 19 Kim YW, Roh SY, Kim JS. et al. Volar plate avulsion fracture alone or concomitant with collateral ligament rupture of the proximal interphalangeal joint: A comparison of surgical outcomes. Arch Plast Surg 2018; 45: 458-465
  • 20 Gupta P, Lenchik L, Wuertzer SD. et al. High-resolution 3-T MRI of the fingers: Review of anatomy and common tendon and ligament injuries. AJR Am J Roentgenol 2015; 204: W314-323
  • 21 Schoffl I, Oppelt K, Jungert J. et al. The influence of the crimp and slope grip position on the finger pulley system. J Biomech 2009; 42: 2183-2187
  • 22 Schweizer A. Biomechanical properties of the crimp grip position in rock climbers. J Biomech 2001; 34: 217-223
  • 23 Goncalves-Matoso V, Guntern D, Gray A. et al. Optimal 3-T MRI for depiction of the finger A2 pulley: Comparison between T1-weighted, fat-saturated T2-weighted and gadolinium-enhanced fat-saturated T1-weighted sequences. Skeletal Radiol 2008; 37: 307-312
  • 24 Guntern D, Goncalves-Matoso V, Gray A. et al. Finger A2 pulley lesions in rock climbers: Detection and characterization with magnetic resonance imaging at 3 Tesla--initial results. Invest Radiol 2007; 42: 435-441
  • 25 Bayer T, Fries S, Schweizer A. et al. Stress examination of flexor tendon pulley rupture in the crimp grip position: A 1.5-Tesla MRI cadaver study. Skeletal Radiol 2015; 44: 77-84
  • 26 Bayer T, Adler W, Schweizer A. et al. Evaluation of finger A3 pulley rupture in the crimp grip position-a magnetic resonance imaging cadaver study. Skeletal Radiol 2015; 44: 1279-1285
  • 27 Clavero JA, Alomar X, Monill JM. et al. MR imaging of ligament and tendon injuries of the fingers. Radiographics 2002; 22: 237-256
  • 28 Bayer T, Schoffl VR, Lenhart M. et al. Epiphyseal stress fractures of finger phalanges in adolescent climbing athletes: A 3.0-Tesla magnetic resonance imaging evaluation. Skeletal Radiol 2013; 42: 1521-1525
  • 29 El-Sheikh Y, Lutter C, Schoeffl I. et al. Surgical Management of Proximal Interphalangeal Joint Repetitive Stress Epiphyseal Fracture Nonunion in Elite Sport Climbers. J Hand Surg Am 2018; 43: 572 e571-572 e575
  • 30 Sims LA. Upper Extremity Injuries in Rock Climbers: Diagnosis and Management. J Hand Surg Am 2022; 47: 662-672
  • 31 Boulas HJ, Milek MA. Hook of the hamate fractures. Diagnosis, treatment, and complications. Orthop Rev 1990; 19: 518-529
  • 32 Milek MA, Boulas HJ. Flexor tendon ruptures secondary to hamate hook fractures. J Hand Surg Am 1990; 15: 740-744
  • 33 Prokop M, Schneider G, Vanzulli A. et al. Contrast-enhanced MR Angiography of the renal arteries: Blinded multicenter crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine. Radiology 2005; 234: 399-408
  • 34 den Hollander NK, Verstappen M, Sidhu N. et al. Hand and foot MRI in contemporary undifferentiated arthritis: In which patients is MRI valuable to detect rheumatoid arthritis early? A large prospective study. Rheumatology (Oxford) 2022; 61: 3963-3973
  • 35 Schueller-Weidekamm C, Lodemann KP, Grisar J. et al. Contrast-enhanced MR imaging of hand and finger joints in patients with early rheumatoid arthritis: Do we really need a full dose of gadobenate dimeglumine for assessing synovial enhancement at 3 T?. Radiology 2013; 268: 161-169
  • 36 Tani C, D’Aniello D, Possemato N. et al. MRI pattern of arthritis in systemic lupus erythematosus: A comparative study with rheumatoid arthritis and healthy subjects. Skeletal Radiol 2015; 44: 261-266
  • 37 Cimmino MA, Barbieri F, Boesen M. et al. Dynamic contrast-enhanced magnetic resonance imaging of articular and extraarticular synovial structures of the hands in patients with psoriatic arthritis. J Rheumatol Suppl 2012; 89: 44-48
  • 38 Cimmino MA, Parodi M, Zampogna G. et al. Dynamic contrast-enhanced, extremity-dedicated MRI identifies synovitis changes in the follow-up of rheumatoid arthritis patients treated with rituximab. Clin Exp Rheumatol 2014; 32: 647-652
  • 39 Renner N, Kleyer A, Kronke G. et al. T2 Mapping as a New Method for Quantitative Assessment of Cartilage Damage in Rheumatoid Arthritis. J Rheumatol 2020; 47: 820-825
  • 40 Horcajadas AB, Lafuente JL, de la Cruz Burgos R. et al. Ultrasound and MR findings in tumor and tumor-like lesions of the fingers. Eur Radiol 2003; 13: 672-685
  • 41 Stacy GS, Bonham J, Chang A. et al. Soft-Tissue Tumors of the Hand-Imaging Features. Can Assoc Radiol J 2020; 71: 161-173
  • 42 Mundada P, Becker M, Lenoir V. et al. High resolution MRI of nail tumors and tumor-like conditions. Eur J Radiol 2019; 112: 93-105

Zoom Image
Fig. 1 a Diagram of finger anatomy. Capsule structures and flexor tendon support apparatus. Lig. collateralia (thick arrows) and lig. collateralia accessoria (thin arrows); annular pulleys (A1–A5), VP volar plate. b Cross-section at the level of the MCP: ET extensor tendon, FDP tendon of the m. flexor digitorum profundus, FDS tendon of the m. flexor digitorum superficialis, IOS tendons of the mm. interossei, LM lumbrical muscle, LMTP lig. metacarpeum transversum profundum, circle indicates Zancolli complex, A1 A1 pulley. c Trauma mechanism of the Stener lesion as a complication of ski thumb injury: Lig. collaterale & lig. collaterale accessorium (thick arrows) are dislocated over the adductor aponeurosis (AA). EH: extensor hood MAP: m. adductor pollicis. Source: Biotic Artlab.
Zoom Image
Fig. 2 a Traumatic ligament and capsule injuries of the finger. F 48 yrs, dig. 3. PIP, PD fs coronal: undislocated rupture (arrow) of an ulnar collateral ligament after distortion. The accessory ulnar cord to the VP (arrowhead) and two radial-sided UCL cords (arrowheads) are intact. The injury healed without any problems after conservative therapy. (b and c) F 68 yrs, dig. 1, PD fs coronal (b) and ax T2 (c): Stener lesion as a complication of a “ski thumb injury” after distortion. Dislocation of the ulnar collateral ligament of dig. 1 due to recoil during trauma (yo-yo sign, arrowheads). Arrow: adductor aponeurosis. Surgical revision with ligament suturing followed. d–f M 42 yrs, dig. 2. PIP, PD fs sagittal: d Avulsion of the VP with clear retraction (arrow). e For comparison, the VP of dig. 3 of the same patient is correctly positioned (arrow). f Example of fluid leakage into the extracapsular soft tissues with rupture of the distal insertion of the VP of dig. 2 of a different patient (arrow). The joint shows degenerative changes with osteophytic growths and chondropathy, particularly at the palmar proximal phalanx head.
Zoom Image
Fig. 3 a Traumatic ligament and pulley injuries of the finger. F 23 yrs, PD TSE fs axial: Singular A4 pulley rupture. Despite the slight intercalation of the ruptured pulley stump between tendon and bone (arrow), conservative therapy in this case had a very good functional outcome. The axial MRI allows detection of intercalation of ruptured pulley stumps under the flexor tendons, which in more severe cases can be a criterion for surgical revision. b M 36 yrs, PD TSE sagittal functional images: Triple A2, A3, A4 pulley rupture dig. 4 (left) with increased bowstringing (arrows) over the proximal and middle phalanx, as well as over the VP of the PIP with separation of the chiasma tendineum (circle) with increasing finger flexion (middle, right). Surgical pulley reconstruction followed. c–f M 25 yrs , dig. 4. MPR reconstructions of a 3D TrueFISP GRE: Cut injury of the FDP tendon with retracted FDP tendon stump extending to the metacarpal (arrow; c, d, e, f). The intact FDS tendon ligaments are isolated and intact in 3D (arrowheads; c, d, e). Surgical tendon reconstruction followed. g M 46 yrs, T1 TSE fs post CM; putrid tenosynovitis in the 3rd to 6th extensor tendon compartment following a previous minor injury/rhagades. MRI enables diagnosis of spread to plan surgical debridement. h F 66 yrs, PD TSE fs axial: De Quervain tenosynovitis with inflammatory thickening of the extensor pollicis brevis and abductor pollicis longus tendons in the first extensor tendon compartment (arrow).
Zoom Image
Fig. 4 a M 15 yrs, PD TSE fs axial: dig. 3. Stress fracture (arrow) dorsally in the epiphyseal plate due to chronic repetitive overload during climbing training. The X-ray image in this case was occult and not informative. Adequate training rest with immobilization is important for healing in order to prevent the formation of pseudarthroses. b–c M 35 yrs PD TSE fs axial and computed tomography in neutral position: Pseudarthrosis of the hamulus ossis hamati as a result of chronic repetitive overloading with stress fracture. Symptomatic in this case, however, was chronic tenosynovitis of the flexor tendon (arrow) dig. 5 due to irritation at the pseudarthrosis gap (arrowheads). d–e Same patient. PD TSE fs axial and coronal functional images: The patient’s symptoms were provoked by ulnar deviation, because the dig. 5 flexor tendon (arrow) dislocated into the diverging carpal pseudarthrosis gap (arrowheads). MRI in the functional position confirmed the pathomechanism and surgical revision with resection of the hamulus was performed. f–g F 37 yrs, PD TSE fs coronal and Dorso-volar X-ray: bony avulsion of the UCL at the IP of the thumb. The strong bone marrow edema can only be seen in MRI, whereas the fracture gap is also visible in X-ray (arrow).
Zoom Image
Fig. 5 a Rheumatic diseases. F 53 yrs, X-ray a.p.: Psoriatic arthritis is characterized by osteodestructive-erosive and osteoproliferative changes. In this example of long-standing psoriatic arthritis, erosions are visible at the radial middle phalanx base and the proximal phalanx head (arrows). In addition, periosteal osteoproliferative changes are seen on the radial side of the distal proximal phalanx (arrowhead). On the ulnar side at the level of the PIP joint, there is a pronounced soft tissue swelling (asterisk). b M 65 yrs, X-ray a.p.: Involvement of the interphalangeal joints is characteristic of psoriatic arthritis. This example shows pronounced osteoproliferative changes at the distal interphalangeal joint of dig. 2 (arrows). In addition, periosteal osteoproliferations are visible at the distal proximal phalanx of dig. 3 (arrowheads). c Same patient. T1w fs post CM: The MRI acquired on the same day also shows the soft tissue changes of florid synovitis (arrows) as well as diffuse subcutaneous and periosteal soft tissue inflammation corresponding to the clinical picture of dactylitis (arrowhead). In addition, diffuse edema-equivalent marrow cavity alterations corresponding to osteitis are found, which cannot be detected in X-rays but can be detected in MRI and, to a limited extent, in dual energy CT (asterisk). d F 65 yrs, X-ray a.p.: This example shows osteodestructive and osteoproliferative changes in different fingers in the context of psoriatic arthritis. Clear erosions can be seen in the area of the base of the proximal phalanx of D5 (arrows). At the same time, osteoproliferations (“protuberances”) are visible at the distal interphalangeal joints of dig. 2 and dig. 3 (small arrowheads). In addition, a typical “pencil in cup” pattern of advanced osteodestruction is seen in the distal parts of the middle phalanx with buttonhole deformity of dig. 5 typical of advanced disease (large arrowhead). e M 76 yrs, X-ray a.p.: The most important differential diagnosis of psoriatic arthritis is interphalangeal joint osteoarthritis. This example shows the erosive form of interphalangeal joint osteoarthritis with characteristic bird-wing deformities of the distal interphalangeal joints of dig. 3 and dig. 4 (black arrows). In addition, what are known as “sawtooth” erosions are found in subchondral locations at the PIP joint of dig. 4 (white-bordered arrows). f F 66 yrs, X-ray a.p.: This example shows a classic “sawtooth” erosion in the proximal interphalangeal joint of dig. 2 (arrows), while the third PIP joint shows a non-erosive appearance of advanced osteoarthritis with joint space narrowing and subchondral sclerosis (arrowhead). The main difference between the two osteoarthritis subtypes is the presence or absence of erosions on X-ray. The clinical manifestations are often very similar, although erosive osteoarthritis is characterized by more frequent bouts of inflammation that affect several joints simultaneously and can last for years. g F 71 yrs, PDw coronal: Erosive osteoarthritis. The MRI shows a subchondral cystic lesion (arrow) and a classic marginal osteophyte (arrowhead). h Same patient. T1 fs post CM axial: Correspondingly, at the level of the joint space a pronounced intra- and periarticular contrast enhancement is visible as part of a florid synovitis (arrows). i F 83 yrs, X-ray a.p.: The simultaneous presence of degenerative-arthritic and primary inflammatory changes occurs particularly in older patients with late onset RA. This example shows typical rheumatic erosions in the context of rheumatoid arthritis at the ulnar bases of dig. 4 and dig. 5 (long arrows). In addition, typical osteophytic growths are found in IP osteoarthritis (small arrowheads). A narrowing of the joint space is particularly evident in the PIP joint on dig. 5 (short arrow). Finally, subchondral erosions typical of osteoarthritis are also seen in the DIP joint of dig. 5 (large arrowheads).
Zoom Image
Fig. 6 a Tumor and tumor-like lesions of the finger. M 16 yrs, PD TSE sagittal: Typical enchondroma of the proximal phalanx base of dig. 3 with a discrete cortical fracture on the flexor side (arrowhead). The lesion has sharp margins, is located exclusively in the medullary cavity, and does not show any infiltrative character in the surrounding area. In fluid-sensitive sequences, enchondromas appear highly hyperintense. b The corresponding T1w image shows a homogeneous hypointensity of the lesion (asterisk) and also shows the fracture (arrowheads). c The corresponding lat. X-ray shows typical “scalloping,” i.e. an arch-shaped endosteal thinning of the cortex. The lesion appears radiolucent (asterisk). The fracture cannot be seen on the X-ray. Enchondromas are usually asymptomatic unless complications occur, as in this case. d M 49 yrs, T1 axial native: painful area near the distal phalanx of the thumb. Directly palmar to the nail bed, a round, hypointense mass is visible (arrows). e On axial T2 weighting, the lesion appears predominantly hyperintense (arrow) with central hypointense components (arrowhead), which argues against a purely cystic lesion. f The corresponding T1w fat-suppressed contrast sequence shows strong homogeneous enhancement (arrows). Based on clinical findings, MRI morphology, and CM behavior, the diagnosis of a glomus tumor was made, which was confirmed histologically. g F 46 yrs, T1 axial: Giant cell tumor of the flexor tendon sheath (formerly also referred to as localized form of PVNS). The MRI shows a homogeneous intermediate-hypointense lesion (asterisk), which is well demarcated from the surrounding tissue and has no infiltrative character (arrows). h The corresponding T2 image shows an inhomogeneous signal character of the lesion with only small areas of low signal intensity in the center. The flexor tendon borders the lesion with a broad base (asterisk). In conjunction with the typical localization, these susceptibility effects point to the diagnosis. i T1 fs post CM: The MRI shows strong contrast enhancement of the lesion, especially in the periphery, while larger parts in the center show only low contrast enhancement (asterisk). j F 47 yrs, T2 axial: The differential diagnosis of space-occupying, predominantly hyperintense lesions on T2w includes bursitis, which is rarely observed, however, in the area of the finger. The MRI shows chronic encapsulated bursitis of the dorsal metacarpo-phalangeal bursa (arrows).
Zoom Image
Abb. 1 Schematische Fingeranatomie. a Kapselstrukturen und Beugesehnenhalteapparat. Lig. collateralia (dicke Pfeile) und Lig. collateralia accessoria (dünne Pfeile); anuläre Ringbänder (A1–A5), VP Volare Platte. b Querschnitt auf Höhe des MCP: ES Extensorensehne, FDP-Sehne des M. flexor digitorum profundus, FDS-Sehne des M. flexor digitorum superficialis, IOS-Sehnen der Mm. interossei, LM Lumbrikalmuskel, LMTP Ligg. metacarpale transversum profundum, Kreis Zancolli-Komplex, A1 A1-Ringband. c Traumamechanismus der Stener-Läsion als Komplikation der Skidaumen-Verletzung: Lig. collaterale & Lig. collaterale accessorium (dicke Pfeile) sind über die Adduktoraponeurose (AA) disloziert. EH: Extensorenhaube. MAP: M. adductor pollicis. Source: Biotic Artlab.
Zoom Image
Abb. 2 Traumatische Band- und Kapselverletzungen der Finger. a W 48 J Dig. 3. PIP, PD fs coronal: undislozierte Ruptur (Pfeil) eines ulnaren Collateralbandzügels nach Distorsion. Der akzessorische ulnare Zügel zur VP (Pfeilspitze) sowie 2 radialseitige UCL-Zügel (Pfeilspitzen) sind intakt. Es folgte eine problemlose Ausheilung nach konservativer Therapie. (b und c) W 68 J Dig. 1, PD fs coronal (b) und ax T2 (c): Stener-Läsion als Komplikation einer „Skidaumenverletzung“ nach Distorsion. Dislokation des Lig. collaterale ulnare Dig 1 durch Zurückschnellen während des Traumas (JoJo Zeichen, Pfeilspitzen). Pfeil: Adduktoraponeurose. Es folgte eine operative Revision mit Bandnaht. d–f M 42 J Dig. 2. PIP, PD fs sagittal: d Ausriss der VP mit deutlicher Retraktion (Pfeil). e Zum Vergleich ist die VP des Dig. 3. desselben Patienten regelrecht positioniert (Pfeil). f Beispiel eines Flüssigkeitsaustritts in die extrakapsulären Weichteile bei Ruptur der distalen Insertion der VP von Dig. 2 eines anderen Patienten (Pfeil). Das Gelenk zeigt degenerative Veränderungen mit osteophytären Anbauten und Chondropathie insbesondere am palmaren Grundgliedköpfchen.
Zoom Image
Abb. 3 Traumatische Sehnen- und Ringbandverletzungen der Finger. a W 23 J, PD TSE fs axial: Singuläre A4 Ringbandruptur. Trotz der geringen Interkalation des rupturierten Ringbandstumpfs zwischen Sehne und Knochen (Pfeil) hatte die konservative Therapie in diesem Fall ein sehr gutes funktionelles Ergebnis. Dir axiale MRT ermöglicht das Erkennen von Interkalation rupturierter Ringbandstümpfe unter die Beugesehnen, was in stärker ausgeprägten Fällen ein Kriterium für operative Revision sein kann. b M 36 J, PD TSE sagittal Funktionsaufnahmen: Triple A2, A3, A4 Ringbandruptur Dig 4 (links) mit Zunahme des Bowstringing (Pfeile) über Grund- und Mittelphalanx, sowie über der VP des PIP mit Auseinanderweichen des Chiasma tendineum (Kreis) bei zunehmender Fingerbeugung (mittig, rechts). Es folgte eine operative Ringbandrekonstruktion. c–f M 25 J, Dig. 4. MPR-Rekonstruktionen einer 3D TrueFISP GRE: Schnittverletzung der FDP-Sehne mit retrahiertem FDP-Sehnenstumpf bis zur Mittelhand (Pfeil; c, d, e, f). Die intakten FDS-Sehnen-Zügel sind in der 3D isoliert abgrenzbar und intakt (Pfeilspitzen; c, d, e). Es folgte eine operative Sehnenrekonstruktion. g M 46 J, T1 TSE fs nach KM: putride Tenosynovitis im 3.– 6. Strecksehnenfach nach zuvor Bagatellverletzung/Rhagade. Die MRT ermöglicht eine Ausbreitungsdiagnostik zur Planung des operativen Debridements. h W 66 J, PD TSE fs axial: De Quervain Tenosynovitis mit entzündlicher Verdickung der Extensor pollicis brevis- und Abductor pollicis longus-Sehnen im ersten Strecksehnenfach (Pfeil).
Zoom Image
Abb. 4 a M 15 J, PD TSE fs axial: Dig. 3. Stressfraktur (Pfeil) dorsalseitig in der Epiphysenfuge aufgrund chronisch repetitiver Überlastung beim Klettertraining. Das Röntgenbild war in dem Fall okkult und nicht wegweisend. Eine adäquate Training-Karenz mit Ruhigstellung ist zur Ausheilung wichtig, um einer Pseudarthrosen-Bildung vorzubeugen. b–c M 35 J PD TSE fs axial und Computertomografie in Neutralstellung: Pseudarthrose des Hamulus ossis hamati in Folge einer chronisch repetitiven Überlastung mit Stressfraktur. Symptomatisch war in dem Fall aber die chronische Tenosynovitis der Beugesehne (Pfeil) Dig. 5 durch Irritation am Pseudarthrosenspalt (Pfeilspitzen). d–e Derselbe Patient. PD TSE fs axial und coronal Funktionsaufnahmen: Die Symptomatik des Patienten war in Ulnardeviation provozierbar, da hierbei die Dig. 5 Beugesehne (Pfeil) in den auseinanderweichenden carpalen Pseudarthrosenspalt (Pfeilspitzen) dislozierte. Die MRT in Funktionsstellung bestätigte den Pathomechanismus und es erfolgte eine operative Revision mit Resektion des Hamulus. f–g W 37 J, PD TSE fs coronal und Röntgen dorso-volar: knöcherne Avulsion des UCL am IP des Daumens. Das kräftige Knochenmarködem lässt sich nur in der MRT erkennen, wohingegen der Frakturspalt auch im Röntgen erkennbar ist (Pfeil).
Zoom Image
Abb. 5 Rheumatische Erkrankungen. a W 53 J, Röntgen a. p.: Die Psoriasisarthritis zeichnet sich durch osteodestruktiv-erosive sowie osteoproliferative Veränderungen aus. In diesem Beispiel einer langjährig bestehenden Psoriasisarthritis zeigen sich Erosionen an der radialen Mittelgliedbasis und am Grundgliedköpfchen (Pfeile). Außerdem zeigt sich eine periostale osteoproliferative Veränderung radialseitig an der distalen Grundphalanx. (Pfeilspitze). Ulnarseitig in Höhe des PIP-Gelenkes zeigt sich eine ausgeprägte Weichteilschwellung (Asterisk). b M 65 J, Röntgen a. p.: Eine Beteiligung der Interphalangealgelenke ist charakteristisch für die Psoriasisarthritis. In diesem Beispiel zeigen sich ausgeprägte osteoproliferative Veränderungen am distalen Interphalangealgelenk von Dig. 2 (Pfeile). Außerdem zeigen sich periostale Osteoproliferationen am distalen Grundglied von Dig. 3 (Pfeilspitzen). c Derselbe Pat. T1w fs nach KM: Das am gleichen Tag akquirierte MRT zeigt ebenso die Weichteilveränderungen einer floriden Synovialitis (Pfeile) sowie diffuse subkutane und periostale Weichteilentzündung entsprechend dem klinischen Bild einer Daktylitis (Pfeilspitze). Außerdem finden sich diffuse ödem-äquivalente Markraumalterationen entsprechend einer Osteitis, die nicht im Röntgen aber im MRT und mit Einschränkung auch im Dual Energy-CT detektiert werden kann (Asterisk). d W 65 J, Röntgen a. p.: Dieses Beispiel zeigt osteodestruktive und osteoproliferative Veränderungen an unterschiedlichen Fingern im Rahmen einer Psoriasisarthritis. Im Bereich der Basis der Grundphalanx von D5 sind eindeutige Erosionen abgrenzbar (Pfeile). Gleichzeitig zeigen sich Osteoproliferationen („Protuberanzen“) an den distalen Interphalangealgelenken Dig. 2 und Dig. 3 (kleine Pfeilspitzen). Ferner zeigt sich ein typisches “pencil in cup” –Muster der fortgeschrittenen Osteodestruktion im Bereich der distalen Anteile des Mittelgliedes mit Knopflochdeformität Dig. 5 typisch für eine fortgeschrittene Erkrankung (große Pfeilspitze). e M 76 J, Röntgen a. p.: Die wichtigste Differenzialdiagnose der Psoriasisarthritis ist die Interphalangealgelenksarthrose. Dieses Beispiel zeigt die sogenannte erosive Form der Interphalangealgelenksarthrose mit charakteristischen Vogelschwingen-Deformitäten der distalen Interphalangealgelenke Dig. 3 und Dig. 4 (schwarze Pfeile). Außerdem finden sich sog. „Sägezahn“-Erosionen in subchondraler Lokalisation am PIP-Gelenk von Dig. 4 (weiß umrandete Pfeile). f W 66 J, Röntgen a. p.: Dieses Beispiel zeigt eine klassische „Sägezahn“-Erosion im proximalen Interphalangealgelenk von Dig. 2 (Pfeile), während das dritte PIP-Gelenk ein nicht-erosives Erscheinungsbild einer fortgeschrittenen Arthrose mit Gelenkspaltverschmälerung und subchondraler Sklerose aufweist (Pfeilspitze). Der Hauptunterschied zwischen den beiden Arthrose-Subtypen ist das Vorhandensein oder Nichtvorhandensein von Erosionen im Röntgenbild. Die klinischen Manifestationen sind häufig sehr ähnlich, obwohl die erosive Arthrose durch häufigere Entzündungsschübe gekennzeichnet ist, die mehrere Gelenke gleichzeitig betreffen und über Jahre anhalten können. g W 71 J, PDw coronal: Erosive Arthrose. Die MRT zeigt eine subchondrale zystische Läsion (Pfeil) und einen klassischen marginalen Osteophyten (Pfeilspitze). h Derselbe Pat. T1 fs nach KM axial: Korrespondierend zeigt sich in Höhe des Gelenkspaltes eine ausgeprägte intra- und periartikuläre KM-Aufnahme im Rahmen einer floriden Synovitis (Pfeile). i W 83 J, Röntgen a. p.: Das gleichzeitige Vorhandensein von degenerativ-arthrotischen und primär inflammatorischen Veränderungen kommt insbesondere bei älteren Patienten mit einer sog. „late onset RA“ vor. Dieses Beispiel zeigt typische rheumatische Erosionen im Rahmen einer rheumatoiden Arthritis an den ulnaren Grundliedbasen von Dig. 4 und Dig. 5 (lange Pfeile). Außerdem finden sich typische osteophytäre Anbauten bei IP-Arthrosen (kleine Pfeilspitzen). Eine Gelenkspaltverschmälerung zeigt sich v.a. im PIP-Gelenk on Dig. 5 (kurzer Pfeil). Schließlich zeigen sich auch subchondrale Erosionen typisch für eine Arthrose im DIP-Gelenk von Dig. 5 (große Pfeilspitzen).
Zoom Image
Abb. 6 Tumor und Tumor-ähnliche Läsionen der Finger. a M 16 J, PD TSE sagittal: typisches Enchondrom der Grundgliedbasis Dig. 3 mit diskreter kortikaler Fraktur beugeseitig (Pfeilspitze). Die Läsion ist scharf berandet, ausschließlich im Markraum lokalisiert und zeigt keinen infiltrativen Charakter in die Umgebung. In flüssigkeits-sensitiven Sequenzen imponieren Enchondrome stark hyperintens. b Das korrespondierende T1w Bild zeigt eine homogene Hypointensität der Läsion (Asterisk) und zeigt ebenso die Fraktur (Pfeilsitze). c Das korrespondierende lat. Röntgenbild zeigt ein typisches „Scalloping“, d.h. eine bogenförmige endostale Ausdünnung der Kortikalis. Die Läsion imponiert radioluzent (Asterisk). Die Fraktur ist im Röntgenbild nicht zu erkennen. Enchondrome sind meist asymptomatisch, außer es kommt zu Komplikationen wie in diesem Fall. d M 49 J, T1 axial nativ: schmerzhaftes Areal im Bereich der Endphalanx des Daumens. Direkt palmar angrenzend an das Nagelbett zeigt sich in eine rundliche hypointense Raumforderung (Pfeile). e In axialer T2-Wichtung imponiert die Veränderung überwiegend hyperintens (Pfeil) mit jedoch zentralen hypointensen Anteilen (Pfeilspitze), was gegen eine reine zystische Läsion spricht. f Die korrespondierende T1w fettunterdrückte KM-Sequenz zeigt ein kräftiges homogenes Enhancement (Pfeile). In Zusammenschau von Klinik, MRT-Morphologie und KM-Verhalten wurde die Diagnose eines Glomustumors gestellt, was histologisch bestätigt wurde. g W 46 J, T1 axial: Riesenzelltumor der Beugesehnenscheide (früher auch bezeichnet als lokalisierte Form der PVNS). Die MRT zeigt eine homogen intermediär-hypointense Läsion (Asterisk), die gut zur Umgebung abgegrenzt ist und keinen infiltrativen Charakter aufweist (Pfeile). h Das korrespondierende T2-Bild zeigt einen inhomogenen Signalcharakter der Läsion mit jedoch nur geringen signalarmen Arealen im Zentrum. Die Beugesehne grenzt breitbasig an die Läsion an (Asterisk). In Zusammenschau mit der typischen Lokalisation weisen diese Suszeptibilitätseffekte auf die Diagnose hin. i T1 fs post KM: Die MRT zeigt eine kräftige KM-Aufnahme der Läsion v.a. in der Peripherie, während größere Anteile im Zentrum nur geringgradig KM aufnehmen (Asterisk). j W 47 J, T2 axial: Die Differenzialdiagnose raumfordernder, überwiegend hyperintens imponierender Läsionen in T2w inkludiert Bursitiden, die im Bereich der Finger jedoch eher selten beobachtet werden. Die MRT zeigt eine chronische abgekapselt imponierende Bursitis der Bursa metacarpophalangealis dorsalis (Pfeile).